माना $\left( x +\frac{ a }{ x ^{2}}\right)^{ n }, x \neq 0$, के प्रसार में तीसरे, चौथे तथा पाँचवें पदों के गुणांक $12: 8: 3$ के अनुपात में है। तो इस प्रसार में $x$ से स्वतंत्र पद है ......... |
$5$
$3$
$4$
$6$
$(1+x)^{1000}+x(1+x)^{999}+x^{2}(1+x)^{998}+$ $\cdots \cdots+x^{1000}$ के द्विपद प्रसार में $x^{50}$ का गुणाँक है
${\left( {x + \frac{1}{x}} \right)^{10}}$के विस्तार में मध्य पद है
निम्नलिखित प्रसारों में मध्य पद ज्ञात कीजिए
$\left(\frac{x}{3}+9 y\right)^{10}$
${(1 + x + {x^3} + {x^4})^{10}}$ के विस्तार में ${x^4}$ का गुणांक होगा
$x$ के उन वास्तविक मानों जिनके लिये $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$ के द्विपद प्रसार का मध्य पद $5670$ है, का योग है