- Home
- Standard 11
- Mathematics
7.Binomial Theorem
medium
माना $\left( x +\frac{ a }{ x ^{2}}\right)^{ n }, x \neq 0$, के प्रसार में तीसरे, चौथे तथा पाँचवें पदों के गुणांक $12: 8: 3$ के अनुपात में है। तो इस प्रसार में $x$ से स्वतंत्र पद है ......... |
A
$5$
B
$3$
C
$4$
D
$6$
(JEE MAIN-2021)
Solution
$T _{ r +1} ={ }^{ n } C _{ r }( x )^{ n – r }\left(\frac{ a }{ x ^{2}}\right)^{ r }$
$={ }^{n} C _{ r } a ^{ r } x ^{ n -3 r }$
${ }^{ n } C _{2} a ^{2}:{ }^{ n } C _{3} a ^{3}:{ }^{ n } C _{4} a ^{4}=12: 8: 3$
After solving
$n =6, a =\frac{1}{2}$
For term independent of $x ^{\prime} \Rightarrow n =3 r$
$r =2$
$\therefore$ Coefficient is ${ }^{6} C _{2}\left(\frac{1}{2}\right)^{2}=\frac{15}{4}$
Nearest integer is $4 .$
Standard 11
Mathematics